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S M O O T H  B O R E S  I N  A T W O - L A Y E R  F L U I D  W I T H  A F R E E  B O U N D A R Y  

B. I. Tu leuov  UDC 532.59 

In this paper, we investigate motions of the type of a smooth bore of a two-layer fluid with a free 
boundary. This is a motion in which the uniform state ahead of a wave continuously goes over into the 
uniform state behind the wave. Following [1], we shall call the limiting states at infinity conjugate flows. 
Nonlinear waves in a two-layer fluid have been extensively studied over the last decades. The model of a 
two-layer fluid with a rigid boundary  has been studied most thoroughly. In this case, the parameters of flows 
of the type of a bore are described in detail on the basis of the long-wave approximation [2 (Chapter 1) and 
3]. The existence of such waves was confirmed experimentally and proved rigorously for exact Euler equations 
[5, 6]. Solitary waves in a two-layer fluid with a free boundary with no velocity shift between the layers were 
studied by Peters and Stoker [7]. Kakutani  and Yamasaki [8] obtained solutions of the type of a bore for this 
case within the framework of the modified Korteweg-de Vries approximation. 

In this paper, the relationships between the parameters of conjugate piecewise-constant flows with a 
free boundary are analyzed on the basis of the laws of conservation of mass, energy, and momentum.  It is 
shown that ,  in contrast  to a two-layer fluid with a rigid boundary [6], there is resonance between a bore and 
a linear wave: a nonlinear bore is accompanied by a periodic wave of smaller ampl i tude with the same phase 
velocity as the velocity of the  bore. For admissible Froude numbers,  an approximate solution in the long-wave 
limit describing the bore profile is constructed. 

F o r m u l a t i o n  of  t h e  P r o b l e m .  We consider the  steady potential  flow of an ideal, incompressible, 
heavy two-layer fluid with a free boundary  above an even bot tom.  We assume tha t  the heavier fluid is below. 
The subscript 1 denotes the quanti t ies that  characterize the flow in the lower layer, and the subscript 2 denotes 
the flow of the upper  layer. We assume that  as z --* -I-co, the flow is piecewise-constant with velocities U~ and 
depths h~ in the layers in the  appropriate average sense, which will be refined below. The  main dimensionless 
paxameters are the Froude numbers  

Fr~ = U~ I P_i 1 Pl P2 g~-'~i (i = 1, 2) 

and the ratio of the depths  of the unper turbed layers is r :t: = h~/h~l, where pi is the fluid density in the 
corresponding layer, and pl > p2. It is convenient to introduce the ampli tude parameters  ai = (h + - h[')/h-[ 
(i = 1, 2) which express the  relative difference in depth  for each layer. In what  follows, we shall use the 
parameters of a s tate that  is a t ta ined as x ---* - c o  and omit the minus sign in the designations. The  state 
parameters for x --+ +co  are determined from the law of conservation of flow rate in the layers. We formulate 
the problem in a fixed range of independent  variables. As the independent variables, we choose the Mises 
variables (x, V), where r is the s tream function. We normalize ~b in such a way that  the strip 0 ~< ~b ~ 1 
corresponds to the lower layer in the plane (x,~b), and the strip 0 <~ ~b ~4 1 + r corresponds to the upper 
layer. The function describing the shape of the streamlines y(x, ~) = ~, + w(x,  r is the desired function. The 
function w should satisfy the following system of equations and boundary conditions: 

w : : ~ + w r 1 6 2  for 0 < r  and 1 < r  (1) 

w = 0  for r  (2) 
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(w) ~=,-0 = (w) ~=~+0; (3) 

I - w(z,  1) = rFr2(wr - f2) (4) Fr2(w~0 - ]'2) ~=l-o ~,= 
1+0; 

#r F r 2 ( ~  - f2) - ~w = 0 for ~ = 1 + r, (51 

Furthermore, it should satisfy the conditions at infinity 

w ~ 0 ,  V w - * 0  for x - - , - o 0 ;  (6) 

~(x,  1) -~ a~, w(x,  1 + r) -~ al + r~2 } 
w z ~ O ,  wr in ith l a y e r ,  for x - -*+o0 .  (7) 

Here A = p2/pl; # = 1 - A; and the vector f has the components 

1 + + f l  = w~:w~ f2 = -  
1 + we' 2 (1 + we) 2 

The limits in (6) and (7) will be treated as follows. It is assumed that as z ~ q-o0, the solution for the 
lower layer is representable in the form w(z,~b) = a~1r + bw~(x,~b) + w~(x,~b), where a + = al; a 1 = O; 
w~ is a periodic-in-z function with zero average over the period, b is the small-amplitude parameter of the 
periodic component, and the function wff tends to zero as z --* 4-o0. A similar representation is implied for 
the upper layer. As will be seen below, the necessity of taking into account the periodic component of the 
solution follows from the s tructure of the spectrum of the linearized problem. 

Ana lys i s  o f  t h e  Laws  o f  C o n s e r v a t i o n .  To derive relations between the state parameters, we use 
the integral law of conservation of the horizontal momentum flux [2 (Chapter 1)], which in our case has the 
form 

1 to 2 t/J~b 
l+r 

tomb 
Fr~ f I +-we de +rFr~ [j w~.--i + we de = -w(x, 1) 2- ~.,~w(x' 1 + r) 2. (8) 

0 I 

In this integral, and Mso in the boundary conditions (4) and (5), which take into account the laws of 
conservation of mass and energy fluxes, we pass to the limit for z --+ +oo with allowance for the asymptotic 
relation (7). Then, in the zeroth approximation for the parameter b, the Froude numbers are expressed 
explicitly through the amplitudes ai: 

Fd = 2 (1 + ~1)~(~ + ~ 2 )  Fd = 2 ~ (1 + ~)2(~, + ~2) 
a l ( a l  "4- 2) ' 7 ~ a2(a 2 3 I- 2) (9) 

The amplitudes, in turn, are related by 

F(al ,a2)  =- a2(al + Ara2)(a2 + 2) + Ara2(al + ra2)(al + 2) = 0. (10) 

In the plane of the Froude numbers (Frl, Fr2), formulas (9) and (10) define the locus of points that represents 
admissible fluid states for x --* - c o .  In this case, the flow for x ~ +oo has the following Froude numbers: 

1 IFrll , IFr+ l=  1 IFr21. I F r + l -  1 + a-----~ 1 + a--'--~ 

Let us use the quantity al as the main small amplitude parameter.  Note that ala2 < 0. It is not hard to 
establish that 1/r < la2/all < 1/At, in particular, - 1  < al < Ar and - 1  < a2 < 1/r. 

Equation (10) defines the amplitude a2 as an implicit function of al.  For small al ,  the following 
expansion is valid: 

a2(al) = -~oal  + ~la 2 + o(a21), (11) 
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where -~[0 (1/r < ~,o < l/)~r) is a single real negative root of the cubic equation 

l_ 1 
(a+_ + ~+ =0, 

r r 
and the coefficient ~1 has the form 

1 (1 - + 
~1 = 2)~r 1-2~0+3r~02 

Formulas (9) with allowance for (11) lead to the relation 

1 2 
Fr22 = f l0 -  r-~02 (erl - a 0 ) +  o(Fr~-  a0), (12) 

which is valid in the neighborhood of the points Fr~ = c~0, al = 0, where a0 = (1/#)(1 - Ar~0) and fl0 = 
(,~/#)(1 - 1/r~0) are the main terms of the expansion of the squares of the Froude numbers Fr~ and Fr~. 
respectively, in terms of powers of hi. 

L inear  Waves. Linearization of the initial system on the piecewise-constant solution with the 
parameters Fri and r yields Eqs. (1)-(5) with f = 0. The linearized equations have a solution in the form of 
periodic waves, wp(x, r  = W(~b)e ikx, if the wave number k and the parameters of the main flow are related 
by the dispersion relation 

( #1 t h k )  (Fr22 #'~ tanh k r ~ r r  ) #2'~2 tanh k tanh kr ( # 2 k  kr A-$ Fr~ - . + Fr~k2r 2 - 1) = 0. (13) 

As [k[ changes from 0 to +c~, the set of points (Frl, Fr2) whose coordinates satisfy (13) forms a spectrum of 
linear waves of infinitely small amplitude. To determine the structure of the spectrum, we treat the dispersion 
relation as a biquadratic equation in Fr2. It can be factored in the form (Fr 2 - Fr22/i)(Fr~ - Fr~/2) = 0 with 
the roots 

= ( -  
# k 

(_2" ( rl' <"':":"<)+ 
# kr ] I x  # k 

which define families of curves that depend on the parameter k and have the discriminant 

D =  Fry ; + 4  tanh2kr Fr~ 
# k ), 

which is rigorously positive for all finite values of k. The form of representatives of these families in the plane 
of the Froude numbers (Frl and Fr2) for fixed k and r is given in Fig. 1. A curve of the first family is a pair 
of 6-shaped curves, and a curve of the second family is an oval. Since D -~ Fr~ as k ~ oo, curves of the first 
family degenerate into the straight line Fr2/1 = 0, and curves of the second family degenerate into the point 
(0,0). Passage to the limit k ---* 0 in Eq. (13) defines a fourth-order curve in the plane of (Frl, Fr2): 

This curve consists of the oval inscribed in the rectangular [-1, 1] x [-vrA, v/~] and four branches of the type 

of hyperbolas with vertical asymptotes Frl = + ~  and horizontal asymptotes Fr2 = + ~  (Fig. 2). Note 
that in [2] curve (14) is of importance for the analysis of characteristics of a quasi-linear system of equations of 
two-layer shallow water. The entire simply-connected region enclosed between the hyperbolic branches (which 
includes the oval containing curves of the second family, concentric ovals) is continuously filled with doubly 
skew-symmetric 6-shaped curves of the first family. 

Thus, for any values of Frl and Fr2 from the indicated region, there is always a wave mode (more 
precisely, two wave modes propagating in opposite directions; for brevity, we shall combine them) defined by 
the first family; one more mode exists for Frl and Fr2, which fall within the oval (the necessary conditions 

409 



F~ 

f -  

Fr21 
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are Fr~ < 1 and Fr22 < A). The first of these modes characterizes fast waves with the higher amplitude on the 
free surface, and the second describes slow waves with the dominating amplitude on the interface. As in the 
case of a two-layer fluid with a rigid boundary [6], the bore type flow branches from the piecewise-constant 
uniform flow at the boundary point in the region of the spectrum that corresponds to the internal-wave mode. 

Indeed, it is not hard to verify that the points Fr 2 = a0 and Fr 2 =/3o belong to the oval, and it follows 
from expansion (12) that the curve of the possible states of bore type flows has a first-order point of tangency 
with the oval (one can show that the tangency is external). However, in contrast to the above-mentioned 
case of flows with a rigid boundary, branching occurs within the spectrum of linear waves. In other words, a 
bore should appear in a pair with a progressive periodic wave whose period is defined by the surface mode 
according to the dispersion relation (13). This situation is similar to the superposition of a solitary wave and 
a rapidly oscillating capillary wave on the surface of a thin fluid layer for Bond numbers Bo < 1/3 [9]. 

A p p r o x i m a t e  So lu t i on .  We consider values of the parameters Fr~ and Fr~ that  satisfy system (9) 
and (10). For such Froude numbers for small al ~ 0, the dispersion relation for k has a single real root 
described by a curve of the first family, Fr2/1. Another root (complex) is described by a curve of the second 
family, and it is purely imaginary: k = ie. Expansion of all quantities in the dispersion relation in power series 
of the parameter al shows that  e and al are of the same order of smallness: e = ~1al + o(al )  (we do not give 
herein the explicit expression for el ~ 0, since its specific form is of no significance here). The smallness of 
e for small al means that  the flow is of a long-wave character for the corresponding Froude numbers. It is 
natural, therefore, to perform a transformation in the spirit of shallow water theory: x t - ex (the prime is 
omitted below). This is equivalent to the choice of the quantity h l / e  as the characteristic length along the 
horizontal. We seek an approximate solution in the form 

oo 
y = r  

Then, system (1)-(5) with allowance for the expansion of the Froude numbers gives a sequence of boundary- 
value problems for determining the functions wn; for n = 1 we have 

w l r 1 6 2 1 6 2  l a n d l  < r  l + r ,  w l = 0  f o r ~ = 0 ,  

(Wl) ~b=l-0 = (Wl) ~b----l+0' O~0(Wl~b) ~b=l-0 -- r~0(Wl~b)l~b--l+0 -- Wl(X' 1) ----- O, 

and #r~0wl~ - Awx = 0 for ~, = 1 + r. For this approximation, the conditions at infinity are as follows: 

wl--+0, VWl---+0 for x---+-oo, wx={ r 0~<r 
1 - ( 0 ( r  l < ~ b < l + r  for x ~ - F c o .  
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Then, 

Wl (37~ ~) A(x) 
1 + ( 1 -  ~)~0, 1 < ~ . . < l + r .  

The ordinary differential equation for A(x) is obtained as the condition of compatibility of equations for the 
third approximation: A I~ = 2A 3 - 3A 2 4- A (the prime denotes differentiation with respect to x). The solution 
of the type of a bore is written with accuracy up to translation along x: 

A(z) = ~(1 + tanh ? ) .  

Here the constant o taking values of 4-1 has the meaning of a parameter that indicates the direction of wave 
reversal. 

In conclusion, we note that four points on the oval with the coordinates Frl = 4-vC~--ff and Fr2 = + v r ~  
divide the boundary of the spectrum of linear waves of the internal mode into four arcs. Each of these arcs 
consists of bifurcation points at which the branches of solitary internal waves paired with linear waves of the 
surface mode originate. 

The author is grateful to N. I. Makarenko for formulating the problem and for constant interest to this 
work. 
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